
System Programming

Unit 1

Introduction

Introduction

• What is System?

– System is the collection of various components

• Ex:- College is a system.

• College is a system because it consist of
various components like various departments,
classrooms, faculties and students.

• What is Programming?

– Art of designing and implementing the programs.

• In college system, what is program?

• A LECTURE can be a program. Because it has
input and output.

• Input-> The information that teacher is
delivering.

• Output-> The knowledge student has been
received.

• So system programming is an art of designing
and implementing system Programs.

What is Software ?

• Software is collection of many programs

• Two types of software

– System software: These programs assist
general user application programs

• Ex:- Operating System , Assembler etc.

– Application software

• These are the software developed for the
specific goal. Ex. Media Player, Adobe Reader.

• System Program:-

“These are programs which are required for the
effective execution of general user programs on
computer system.”

• System Programming:-

“ It is an art of designing and implementing

system programs.”

Syllabus

Text Editors

• Text editor’s example is Notepad.

• Editor is a computer program that allows a user
to create and revise a document.

• A text editor is a program in which the primary
elements being edited are character strings.

• A text editor is a type of program used for editing
plain text files.

• With the help of text editor you can write your
program(e.g. C Program or Java Program).

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Text_file

Loaders

• A loader is a program that takes object code
as input and prepares them for execution.

• It initiates the execution.

• Functions:

1. Allocation

2. Linking

3. Relocation

4. Loading

Allocation

• Loader allocates space for programs in main
memory.

Linking

• If we have different modules of our program.

• Loader links object modules with each other.

Relocation

• Adjusting all address dependent location.

• E.g. If we have two Programs Program A and
Program B.

• Program A is saved at location 100.

• And user wants to save Program B on same
location. That is physically not possible.

• So loader relocates program B to some
another free location.

Loading

• Physically loading the machine instructions
and data into main memory.

Assembler

• Assembler is a translator which translates
assembly language program into machine
language.

Assembler
Assembly Language
Program

Machine Language

Macro Processor

• Macro allows a sequence of source language
code to be defined once and then referred
many times.

• Syntax:

Macro macro-name [set of parameters]

// Macro Body

MEND

• A macro processor takes a source with macro
definition and macro calls and replaces each
macro call with its body.

Compiler

• Compiler is a translator which converts the
high level language into low level language.

• Benefits of writing a program in a high level
language :

• Increases productivity: It is very easy to write
a program in a high level language.

• Machine Independence: A program written in
a high level language is machine independent.

Debugger

• Debugging tool helps programmer for testing
and debugging programs.

• It provides some facilities:

• Setting breakpoints.

• Displaying values of variables.

Assembly Language

• Assembly language is low level language.

• An assembly language is machine dependent.

• It differs from computer to computer.

• Writing programs in assembly language is very
easy as compared to machine(binary) language.

Assembly language programming
Terms:

• Location Counter: (LC) points to the next
instruction.

• Literals: constant values

• Symbols: name of variables and labels

• Procedures: methods/ functions

Assembly language Statements:

• Imperative Statements:

• Declarative/Declaration Statements:

• Assembler Directive:

Imperative Statements

• Imperative means mnemonics

• These are executable statements.

• Each imperative statement indicates an action
to be taken during execution of the program.

• E.g. MOVER BREG, X

STOP

READ X

ADD AREG, Z

Declarative Statements

• Declaration statements are for reserving
memory for variables.

• We can specify the initial value of a variable.

• It has two types:

• DS // Declare Storage

• DC // Declare Constant

DS(Declare Storage):

• Syntax:

• [Label] DS <Constant specifying size>

• E.g. X DS 1

DC (Declare Constant):

Syntax:

[Label] DC <constant specifying value>

E.g Y DC ‘5’

Assembler Directive

• Assembler directive instruct the assembler to
perform certain actions during assembly of a
program.

• Some assembler directive are:

• START <address constant>

• END

Advanced Assembler Directives

• 1. ORIGIN

• 2. EQU

• 3. USING

• 4. DROP

• 5. LTORG

Sample Assembly Code

1. START 100 It is an AD statement becoz it has Assembler
directive START

2. MOVER AREG, X It is an IS because it starts with mnemonic.

3. MOVER BREG, Y

4. ADD AREG, Y

5. MOVEM AREG, X

6. X DC ‘10’ It is an DS/ DL statement because it has DC

7. Y DS 1 It is an DS/ DL statement because it has DS

8. END

Identify the types of statements
State.No IS DS AD

1

2

3

4

5

6

7

8

Identify the types of statements
State.No IS DS AD

1 AD

2 IS

3 IS

4 IS

5 IS

6 DS

7 DS

8 AD

Advanced Assembler Directives

• ORIGIN

• EQU

• LTORG

Definitions

• LC:

• Symbol:

• Literals:

• Procedures:

How LC Operates?
Sr. NO LC
1 START 100

2 MOVER AREG, X

3 MOVER BREG, Y

4 ADD AREG, BREG

5 MOVEM AREG, X

6 X DC ‘10’

7 Y DC ‘15’

8 END

How LC Operates?
Sr. NO LC
1 START 100

2 MOVER AREG, X 100

3 MOVER BREG, Y 101

4 ADD AREG, BREG 102

5 MOVEM AREG, X 103

6 X DC ‘10’ 104

7 Y DC ‘15’ 105

8 END

Identify symbol, literals, AD, IS, DS,
Label

• START 100
• MOVER BREG, =‘2’
• LOOP MOVER AREG, N
• ADD BREG, =‘1’
• ORIGIN LOOP+5
• LTORG
• ORIGIN NEXT +2
• LAST STOP
• N DC ‘5’
• END

Solution (From Previous Example)
Sr. No AD DS IS Symb

ol

Literal Label

1 AD

2 IS =2

3 IS N LOOP

4 IS =1

5 AD

6 AD

7 AD

8 IS LAST

9 DS

10 AD

Machine Structure

Machine Structure

• Consider any hypothetical assembly language.

• It supports three registers:

• AREG

• BREG

• CREG

• Machine instruction Format:

• It supports 11 different OPERATIONS.
• STOP
• ADD
• SUB
• MULT
• MOVER
• MOVEM
• COMP
• BC
• DIV
• READ
• PRINT

• In this hypothetical machine,

• First operand is always a CPU register.

• Second operand is always memory operand.

• READ and PRINT instructions do not use first
operand.

• The STOP instruction has no operand.

• Each symbolic opcode is associated with
machine opcode.

• These details are stored in machine opcode
table(MOT).

• MOT contains:

• 1. Opcode in mneonic form

• 2. Machine code associated with the opcode.

Symbolic Opcode Machine Code for

opcode

Size of instruction

(in number of

words)

STOP 00 1

ADD 01 1

SUB 02 1

MULT 03 1

MOVER 04 1

MOVEM 05 1

COMP 06 1

BC 07 1

DIV 08 1

READ 09 1

PRINT 10 1

Symbolic Opcode Machine Code for opcode

START 01

END 02

LTORG 03

ORIGIN 04

EQU 05

Sr. NO Declarative Statement Machine Opcode

01 DS 01

02 DC 02

Sr.
No

Symbolic opcode Machine opcode

1 AREG 01

2 BREG 02

3 CREG 03

ASSEMBLER

• An assembly language program can be translated
into machine language.

• It involves following steps:

• 1. Find addresses of variable.

• 2. Replace symbolic addresses by numeric
addresses.

• 3. Replace symbolic opcodes by machine
operation codes.

• 4. Reserve storage for data.

Step 1

• We can find out addresses of variable using LC.
• First identify all variables in your program.
• START 100
• MOVER AREG, X
• MOVER BREG, Y
• ADD AREG, X
• MOVEM AREG, X
• X DC ‘10’
• Y DC ‘15’
• END

Sr. NO LC
1 START 100

2 MOVER AREG, X 100

3 MOVER BREG, Y 101

4 ADD AREG, X 102

5 MOVEM AREG, X 103

6 X DC ‘10’ 104

7 Y DC ‘15’ 105

8 END

Step 1

Sr. No Name of
Variable(Symbol)

Address

1 X 104

2 Y 105

Step2: Replace all symbolic address
with numeric address.

• START 100

• MOVER AREG, 104

• MOVER BREG, 105

• ADD AREG, 104

• MOVEM AREG, 104

• X DC ‘10’

• Y DC ‘15’

• END

Memory is reserved but no code is
generated.

Step3: Replace symbolic opcodes by
machine operation codes.

LC Assembly Instruction Machine Code

101 MOVER AREG, 104 04 01 104

102 MOVER BREG, 105 04 02 105

103 ADD AREG, 104 01 01 104

104
MOVEM AREG, 104

05 01 104

105

106

107

Question For U

START 102
READ X
READ Y
MOVER AREG, X
ADD AREG, Y
MOVEM AREG, RESULT
PRINT RESULT
STOP
X DS 1
Y DS 1
RESULT DS 1
END

Question For u
START 101
READ N
MOVER BREG, ONE
MOVEM BREG, TERM

AGAIN MULT BREG, TERM
MOVER CREG, TERM
ADD CREG, ONE
MOVEM CREG, TERM
COMP CREG, N
BC LE, AGAIN
MOVEM BREG, RESULT
PRINT RESULT
STOP
N DS 1
RESULT DS 1
ONE DC ‘1’
TERM DS 1

Assembler

• An Assembler is a translator which translates
assembly language code into machine
language with help of data structure.

• It has two types

• Pass 1 Assembler.

• Pass 2 Assembler.

General design procedure of
assembler

• Statement of Problem

• Data Structure

• Format of databases

• Algorithms

• Look for modularity.

Statement of Problem

• We want to convert assembly language
program into machine language.

Data Structure Used

• Data Structure used are as follows:

• Symbol table

• Literal Table

• Mnemonic Opcode Table

• Pool Table

Format of Databases

• Symbol Table:

• Literal Table:

Name of Symbol address

Literal address

• MOT:

• Pool Table:

Mnemonic Machine Opcode Class Length

Literal Number

Look for Modularity

• If your program is too long…

• U can make modules of it.

Forward Reference Problem

• Using a variable before its definition is called as
forward reference problem.

• E.g.
• START 100
• MOVEM AREG, X
• MOVER BREG, Y
• ADD AREG, Y
• X DC ‘4’
• Y DC ‘5’
• END

• In example variable X, Y are making forward
reference.

• So, We can solve it by using back patching.

Consider another example

Apply LC

Try to convert it into machine code

Try to convert into machine code

Backpatching

• The operand field of instruction containing a
forward reference is left blank initially.

• Step 1: Construct TII(Table of incomplete
instruction)

• Step 2: After encountering END statement
symbol table would contain the address of all
symbols defined in the source program.

SYMBOL NAME ADDRESS

X 104

ONE 105

TEN 106

• Now we can generate machine code…

Assembler Directive

• ORIGIN

• LTORG

• EQU

Pass 1 Assembler

• Pass 1 assembler separate the labels ,
mnemonic opcode table, and operand fields.

• Determine storage requirement for every
assembly language statement and update the
location counter.

• Build the symbol table. Symbol table is used to
store each label and each variable and its
corresponding address.

• Pass 2 Assembler: Generate the machine code

How pass 1 assembler works?

• Pass I uses following data structures.

• 1. Machine opcode table.(MOT)

• 2. Symbol Table(ST)

• 3. Literal Table(LT)

• 4. Pool Table(PT)

• Contents of MOT are fixed for an assembler.

Observe Following Program

START 200
MOVER AREG, =‘5’
MOVEM AREG, X

L1 MOVER BREG, =‘2’
ORIGIN L1+3
LTORG

NEXT ADD AREG, =‘1’
SUB BREG, =‘2’
BC LT, BACK
LTORG

BACK EQU L1
ORIGIN NEXT+5
MULT CREG, =‘4’
STOP
X DS 1
END

Apply LC
START 200

MOVER AREG, =‘5’ 200
MOVEM AREG, X 201

L1 MOVER BREG, =‘2’ 202
ORIGIN L1+3
LTORG

=‘5’ 205
=‘2’ 206

NEXT ADD AREG, =‘1’ 207
SUB BREG, =‘2’ 208
BC LT, BACK 209
LTORG

=‘1’ 210
=‘2’ 211

BACK EQU L1
ORIGIN NEXT+5
MULT CREG, =‘4’ 212
STOP 213
X DS 1 214
END

=‘4’ 215

Construct Symbol table

index Symbol Name Address

0 X 214

1 L1 202

2 NEXT 207

3 BACK 202

Construct Literal Table

index Literal Address

0 5 205

1 2 206

2 1 210

3 2 211

4 4 215

Pool Table.

• Pool table contains starting literal(index) of
each pool.

Literal number

0

2

4

NOW CONSTRUCT INTERMEDIATE
CODE/MACHINE CODE

• For constructing intermediate code we need
MOT.

Enhanced Machine opcode Table

INTERMEDIATE CODE

• Format for intermediate code:

• For every line of assembly statement, one line
of intermediate code is generated.

• Each mnemonic field is represented as

• (statement class, and machine code)

• Statement class can be:

• 1. IS

• 2. DL/DS

• 3. AD

• So, IC for mnemonic field of above line is,

• (statement class, machine code)

• (IS, 04) …………………from MOT

• Operand Field:
• Each operand field is represented as

(operand class, reference)

• The operand class can be:

• 1. C: Constant
• 2. S: Symbol
• 3. L: Literal
• 4. RG: Register
• 5. CC: Condition codes

• E.g. MOVER AREG, X

• For a symbol or literal the reference field
contains the index of the operands entry in
symbol table or literal table.

•

• So IC for above line is:

• (IS, 04) (RG, 01) (S, 0)

• For example…

• START 200

• IC: (AD, 01) (C, 200)

Intermediate Code

(AD, 01) (C, 200)

200 (IS, 04) (RG,01) (L, 0)

201 (IS, 05) (RG,01) (S,0)

202 (IS, 04) (RG,02) (L,1)

203 (AD, 03) (C, 205)

205 (DL, 02) (C,5)
206 (DL, 02) (C, 2)

207 (IS,01) (RG, 01) (L, 2)

208 (IS, 02) (RG, 02) (L,3)

209 (IS, 07) (CC, 02) (S, 3)

210 (DL,02) (C,1)

211 (DL,02) (C,2)

212 (AD, 04) (C, 202)

212 (AD, 03) (C, 212)

212 (IS, 03) (RG, 03)(L, 4)

213 (IS, 00)

214 (DL, 01, C, 1)

215 (AD, 02)

215 (DL, 02) (C,4)

Example No.2
START 205

MOVER AREG, =‘6’

MOVEM AREG, A

LOOP MOVER AREG, A

MOVER CREG, B

ADD CREG, =‘2’

BC ANY , NEXT

LTORG

ADD BREG, B

NEXT SUB AREG, =‘1’

BC LT, BACK

LAST STOP

ORIGIN LOOP+2

MULT CREG, B

ORIGIN LAST+1

A DS 1

BACK EQU LOOP

B DS 1

END

• PASS 2 assembler requires two scans of
program to generate machine code.

• It uses data structures defined by pass 1. like
symbol table, MOT, LT.

Design of two pass assembler

• Tasks performed by the passes of a two pass
assembler are as follows:

• Pass 1:
1. Separate the symbol, mnemonic opcode, and
operand fields.
2. Build the symbol table.
3. Perform LC processing.
4. Construct intermediate representation(or IC).
• Pass 2:
1. Synthesize the target program.

Two Pass Assembler

Analysis Phase Vs. Synthesis Phase

Pass 1 Algorithm

Pass 2 Algorithm

Comparison between Pass 1 and Pass2
Sr. No Pass 1 Pass 2

01 It requires only one scan to
generate machine code

It requires two scan to generate
machine code.

02 It has forward reference
problem.

It don’t have forward reference
problem.

03 It performs analysis of
source program and
synthesis of the
intermediate code.

It process the IC to synthesize the
target program.

04 It is faster than pass 2. It is slow as compared to pass 1.

Pass 1 output and pass 2 output

• Pass 1 assembler generates Intermediate
code.

• Pass 2 assembler generates Machine code.

Consider following example

START 200
MOVER AREG, =‘5’ 200
MOVEM AREG, X 201

L1 MOVER BREG, =‘2’ 202
ORIGIN L1+3
LTORG

=‘5’ 205
=‘2’ 206

NEXT ADD AREG, =‘1’ 207
SUB BREG, =‘2’ 208
BC LT, BACK 209
LTORG

=‘1’ 210
=‘2’ 211

BACK EQU L1
ORIGIN NEXT+5
MULT CREG, =‘4’ 212
STOP 213
X DS 1 214
END

=‘4’ 215

Symbol Table and Literal Table

•
index Symbol Name Address

0 X 214

1 L1 202

2 NEXT 207

3 BACK 202

index Literal Address

0 5 205

1 2 206

2 1 210

3 2 211

4 4 215

I.C LC Machine Code

(AD, 01) (C, 200)

(IS, 04) (RG,01) (L, 0) 200 04 01 205

(IS, 05) (RG,01) (S,0) 201 05 01 214

(IS, 04) (RG,02) (L,1) 202 04 02 206

(AD, 03) (C, 205) 203

(DL, 02) (C,5) 205 00 00 005

(DL, 02) (C, 2) 206 00 00 002

(IS,01) (RG, 01) (L, 2) 207 01 01 210

I.C LC Machine Code

(IS, 02) (RG, 02) (L,3) 208 02 02 211

(IS, 07) (CC, 02) (S, 3) 209 07 02 202

(DL,02) (C,1) 210 00 00 001

(DL,02) (C,2) 211 00 00 002

(AD, 04) (C, 202) 212

(AD, 03) (C, 212) 212

(IS, 03) (RG, 03)(L, 4) 212 03 03 215

(IS, 00) 213 00 00 000

I.C LC Machine Code

(DL, 01, C, 1) 214

(AD, 02) 215

(DL, 02) (C,4) 215 00 00 004

Variants of Intermediate Code.

• There are two variants of I.C.:

• Variant I

• Variant II.

Variant I

• In Variant I, each operand is represented by a
pair of the form (operand class, code).

• The operand class is one of:

1. S for symbol 2. L for literal

3. C for constant 4. RG for register.

Variant I

Variant II

• In variant II, operands are processed
selectively.

• Constants and literals are processed. Symbols,
condition codes and CPU registers are not
processed.

Variant II

Comparison

• Variant I does more work in Pass I. Operands
fields are completely processed in Pass 1.
Memory requirements are higher in Pass 1.

• Variant II, Pass 2 has to do more work. Here
the processing requirement is evenly
distributed over two passes.

• In Variant II over all memory requirement of
the assembler is lower.

Memory requirement in Variant 1

Memory requirement in Variant 2

Error Reporting

• An assembly program may contain errors.

• It may be necessary to report these errors effectively.

• Some errors can be reported at the end of the source
program.

• Some of the typical programs include:

• Syntax errors like missing commas…

• Invalid opcode

• Duplicate definition of a symbol.

• Undefined symbol

• Missing START statement.

Example

• START 100

• MOVER AREG, X

• ADDER BREG, X

• ADD AREG, Y

• X DC ‘2’

• X DC ‘3’

• Z DC ‘3’

• END

• START 100

• MOVER AREG, X

• ADDER BREG, X Invalid opcode

• ADD AREG, Y Undefined symbol Y

• X DC ‘2’

• X DC ‘3’ duplicate definition of Symbol X.

• Z DC ‘3’

• END

Assignment 1

2. Explain following Assembler Directives with example.
1. ORIGIN
2. LTORG
3. EQU

3. Write a short note on Assembly language statements.

4. Explain the difference between Pass 1 and Pass2 assembler.

5. Draw and explain flowchart of pass 1 and pass2 assembler.

6. Write a short note on Variant 1 and Variant 2 of Intermediate code.

7. Refer the program from question no. 1 and write down the Intermediate
code and machine code for the same.

