System Pro&gﬁmming
S

=
<N

Unit 1
Introdtiction

R
\../

Introduction

What is System?

— System is the collection of v{arious components
r?\

Ex:- College is a system 5@

College is a system Iqe?:ause it consist of
various component% like various departments,
classrooms, faculties and students.

What is Programming?
— Art of designing and implementing the programs.

In college system, what is program?

A LECTURE can be a program. Because it has
input and output. &

"
R

s“

Input-> The mformatlbn that teacher is
delivering. (R

Output-> The knowledge student has been
received.

* So system programming is an art of designing
and implementing system Programs.
N\

{
s\
X
N
t\&«
u,‘:‘
2 ”5
t\“‘.
Now/
NN
7y
P
\®
."\"

.‘\’w

What is Software ?

e Software is collection of many programs
 Two types of software N
— System software: Thesg,*programs assist

general user appllcatha programs
* Ex:- Operating Syétem Assembler etc.
— Application software

* These are the software developed for the
specific goal. Ex. Media Player, Adobe Reader.

* System Program:-

“These are programs which are required for the
effective execution of geng:ral user programs on
computer system.” S

\J
O
N

e System Programmihg:-
“It is an art of designing and implementing
system programs.”

Syllabus

Unit] [ntroduction @\ 09 Hours

Infroduction: Components of System Sofg@% Text editors, Loaders, Assemblers, Macro

processors, Comptlers, Debuggers. Maeﬁf e Stucture, Machime language and Assembly
Language. Assemblers. General desten procedure, design of two pass assembler

Text Editors

Text editor’s example is Notepad.

Editor is a computer program that allows a user
to create and revise a docum\ent

A text editor is a program in which the primary
elements being edlted»are character strings.

A text editor is a type of program used for editing
plain text files.

With the help of text editor you can write your
program(e.g. C Program or Java Program).

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Text_file

Loaders

* Aloaderis a program that takes object code
as input and prepares them for execution.

L _ N
* |tinitiates the execution,

1 W
* Functions: S

N/
o X\

€AY

. Allocation &
Linking |
Relocation

Loading

B wNp

Allocation

* Loader allocates space for programs in main
memory.

Linking

* |f we have different modules of our program.
* Loader links object modulg\s with each other.

\\\../’
N
”\"'
u,‘:‘
2 .’5
t\“‘.
Now/
7y
P
\®
£\

.‘\’w

Relocation

Adjusting all address dependent location.

E.g. If we have two Programs Program A and
Program B. .\\a;s\

"
R

Program A is saved at\locatlon 100.

And user wants to save Program B on same
location. That is physically not possible.

So loader relocates program B to some
another free location.

Loading

* Physically loading the machine instructions
and data into main memory.
N

s\
X
N
t\&«
u,‘:‘
2 ”5
t\“‘.
Now/
NN
7y
P
\®
£\

.‘\’w

Assembler

e Assembler is a translator which translates
assembly language program into machine

\
language. @&
S
X....:\Q}'
Assembler
Assembly Language Machine Language
Program

Macro Processor

* Macro allows a sequence of source language
code to be defined once and then referred

. A
many times. &

e Syntax: R
Macro macro-nagie [set of parameters]
// Macro Body

MEND

* A macro processor takes a source with macro

definition and macro calls and replaces each
AN

macro call with its body.

Q -
2 ’5
.\“‘
\ 2
o X\

WV

R

’\\./

Compiler

Compiler is a translator which converts the
high level language into Iow level language.

Benefits of writing a program in a high level

LN
s‘..

language : S

Increases productii;'i'ty: It is very easy to write
a program in a high level language.

Machine Independence: A program written in
a high level language is machine independent.

Debugger

Debugging tool helps programmer for testing

and debugging programs.
It provides some faC|I|t|es

Setting breakpomtéw,
Displaying values‘of variables.

N
Assembly Language
KO

Assembly language is low level language.

AN
An assembly language is g@échme dependent.

2 ’5
.\“‘
\ 2
o X\

It differs from compﬁfer to computer.

Writing programs in assembly language is very
easy as compared to machine(binary) language.

Assembly language programming
Terms:

Location Counter: (LC) points to the next

Instruction.

PN

'\ >
\\\./

. A0
Literals: constant values

CA
y
A

\‘..,
Symbols: name of variables and labels

Procedures: methods/ functions

Assembly language Statements:

* Imperative Statements:

LN
g

. . \‘
. Declaratlve/DecIaraJ;mn Statements:

O
AN/

e Assembler Directive:

Imperative Statements

Imperative means mnemonics
These are executable statements

Each imperative stateme\nt |nd|cates an action
to be taken during executlon of the program.

E.g. MOVER BREG; X
STOP
READ X
ADD AREG, Z

Declarative Statements

Declaration statements are for reserving
memory for variables.

LN
N
N\ R

It has two types: &
DS // Declare Stérage

DC // Declare Constant

DS(Declare Storage):

* Syntax:

*Eg. XDS1 &
DC (Declare Constant):
Syntax:

[Label] DC <constant specifying value>
E.g Y DC ‘%

Assembler Directive

Assembler directive instruct the assembler to
perform certain actions during assembly of a
AN

{

program. &

A\
Some assembler directive are:
START <address constant>

END

Advanced Assembler Directives

1. ORIGIN
2. EQU “;\2\\
3. USING i

<OX
1 RO
. TORG

Sample Assembly Code

1. START 100 Itis an AD statement becoz it has Assembler
directive START

>
2. MOVER AREG, X ItisanlS begause it starts with mnemonic.

LN
N
R

3. MOVER BREG, Y S
4. ADD AREG, Y R
5. MOVEM AREG, X

6. X DC ‘10’ Itis an DS/ DL statement because it has DC
7.YDS 1 It is an DS/ DL statement because it has DS
8. END

Identify the types of statements

2

Identify the types of statements

1 AD

2 IS

\
N4
&
3 IS \3\‘&
3
QO
4 IS Q(b
e

5 IS
6 DS
7 DS

Advanced Assembler Directives

* ORIGIN

NN
R

* EQU

* LTORG

LC:

Symbol:

Literals:

Procedures:

Definitions

How LC Operates?

ssNO_ | lc

1 START 100
2 MOVER AREG, X

2
3 MOVER BREG, Y @

\S&
Y
4 ADD AREG, BREG Q}@
<O

5 MOVEM AREG, X
6 X DC ‘10’
7 Y DC ‘15’

8 END

How LC Operates?

ssNO_ | lc

1 START 100

2 MOVER AREG, X 100
2
g\

3 MOVER BREG, Y é& 101
4 ADD AREG, BRE \>‘§35 102
R
5 MOVEM AREE, X 103
6 X DC ‘10’ 104
7 Y DC ‘1%’ 105

8 END

Identify symbol, literals, AD, IS, DS,
Label

START 100

MOVER BREG, =2’

LOOP MOVER AREG, N N
ADD BREG, =1’ e
ORIGIN LOOP+5 N
LTORG
ORIGIN NEXT +2

LAST STOP

N DC ‘5’

END

Solution (From Previous Example)

Sr. No |AD DS) Symb |Literal |Label
o]
AD

1
2 S @ =2
\Q;
3 ISa® N LOOP
48 =
4 & =1
5 AD AN
6 AD
7 AD
8 S LAST
9 DS
10 AD

Machine Structure

I/Q
processor
Card = \Printer Teletype
.
Disk

or drum

L e -y

Machine Structure

D A e e e ey
s

: Other)
" 170 channels -
' " arlv s

Lo o w————a—

1/O channel

-

~

-

-

Memory
contrcller

winl=e

|
'
Al

Memory Address

Register (MB

T
|
|
|
!
|

4

Register (MAR) ‘Q@
Iﬁemory Buffer

Instruction Register (IR)

Instruction
interpreter

)
]
I
]
|
1
208
I
Working =5
Registers I g
(WR) : i
Instruction ‘) ;
Data : :
i
"
P |
B
|
I 5
General g
Registers I L
(GR) % Yo

Consider any hypothetical assembly language.

It supports three registers:_

AREG
BREG
CREG

e Machine instruction Format:

xo
p
"
<
9.\
<
"“‘
i
)
Now/
o N\
b
~
O
NN
/&’m/

opcode register operand Iemory operand

It supports 11 different OPERATIONS.

STOP
ADD
SUB
MULT
MOVER
MOVEM
COMP
BC
DIV
READ
PRINT

In this hypothetical machine,
First operand is aIways a CEU register.

LN
s‘.
R

READ and PRINT mstrUctlons do not use first

OX

operand. S
The STOP instruction has no operand.

Each symbolic opcode is associated with
machine opcode.

LN
N
R

table(MOT). S

o X\

WV

MOT contains: «c°
1. Opcode in mneonic form
2. Machine code associated with the opcode.

Symbolic Opcode Machine Code for | Size of instruction

(in number of

STOP 00 1
ADD 01 1
SUB 02 {\,a\’ 1
MULT &g@’ 1
MOVER 6\\}&04 1
MOVEM &QQ 05 1
comP 06 1
BC 07 1
DIV 08 1
READ 09 1

PRINT 10 1

Symbolic Opcode

Machine Code for opcode

START
END
LTORG
ORIGIN

EQU

S 01
S 02
03

04

05

Declarative Statement Machine Opcode

01 DS N2 01

02 DC 02

E Symbolic opcode Machine opcode

1 AREG . 01
<‘\
xQ
>
§‘
2 BREG §> 02
2
AN

ASSEMBLER

An assembly language program can be translated
into machine language.

It involves following steps
1. Find addresses of varlable

2. Replace symbolic addresses by numeric
addresses. N

3. Replace symbolic opcodes by machine
operation codes.

4. Reserve storage for data.

Step 1

We can find out addresses of variable using LC.
First identify all variables in your program.
START 100 A

MOVER AREG, X &

MOVER BREG, Y D)
ADD AREG, X
MOVEM AREG, X
X DC ‘10’

Y DC ‘15’

END

Step 1
seNO ||l

1 START 100
2 MOVER AREG, X 100
2
3 MOVER BREG, Y (é@f 101
Y
4 ADD AREG, X q}\} 102
<R

5 MOVEM AREG, X 103
6 X DC ‘10’ 104
7 Y DC ‘15’ 105

8 END

Name of Address
Variable(Symbol}

1 X > 104
S

2 Y 105

Step2: Replace all symbolic address
with numeric address.

START 100
MOVER AREG, 104

>
MOVER BREG, 105 &

Or
”\"'
R

ADD AREG,104 %
MOVEM AREG, 104"
X DC ‘10’ Memory is reserved but no code is

END

Step3: Replace symbolic opcodes by
machine operation codes.

Assembly Instruction Machine Code

101 MOVER AREG, 104 04 01 104
102 MOVER BREG, 105 ;\@ 04 02 105
)
\3{2)
103 ADD AREG, 104) 01 01 104
N
104 o 05 01 104

MOVEM AREG, 104 /\OQ

105
106
107

Question For U

START 102

READ X

READ Y

MOVER AREG, X PG
ADD AREG, Y N
MOVEM AREG, RESULT N
PRINT RESULT ot
STOP KO
X DS 1

YDS 1

RESULT DS 1

END

Question For u

START 101
READ N
MOVER BREG, ONE
MOVEM BREG, TERM
AGAIN MULT BREG, TERM
MOVER CREG, TERM
ADD CREG, ONE R
MOVEM CREG, TERM &
COMP CREG, N N
BCLE, AGAIN
MOVEM BREG, RESULT
PRINT RESULT <&
STOP
N DS 1
RESULT DS 1
ONE DC ‘1’
TERM DS 1

N
L ¥

Assembler

An Assembler is a translator which translates
assembly language code into machine

LN
N
R

o X\

WV

t has two types «o°
Pass 1 Assembler.

Pass 2 Assembler.

General design procedure of

assembler

Statement of Problem
Data Structure
Format of databases
Algorithms
Look for modularity.

N
R

Statement of Problem

 We want to convert assembly language
program into machine language.
N

Data Structure Used

Data Structure used are as follows:
Symbol table
Literal Table 3%

L
N
R

Mnemonic Opcode '[able
Pool Table ©

Format of Databases

* Symbol Table:

Q
e Literal Table: A

MOT:
S T

Pool Table:

Literal Number

Look for Modularity

* If your program is too long...
* U can make modules of it.

.
R ™
X
N
t\&«
u,‘:‘
2 ”5
t\“‘.
Now/
NN
7y
s Sl
\®
£\

.‘\’w

Forward Reference Problem

Using a variable before its definition is called as
forward reference problem.

E.g. A
START 100 &
MOVEM AREG, X &
MOVER BREG, Y <&
ADD AREG, Y

X DC ‘4’

Y DC ‘5’

END

* |[n example variable X, Y are making forward
reference.

> .
* So, We can solve it by U\&lhg back patching.

AN
\Y;
’wl:\.\'
Phe®
R

.‘\’w

Consider another example

START 100
MOVER AREG, X
L1 ADD BREG@NE*
ADD Q;E% TEN
STOP &
X pC AO° 5
ONE DC '’
TEN DC 10"

END

L1

ONE
TEN

Apply LC

START 100
MOVER ARE@X
ADD B§\G ONE
ADD o,@REG TEN
sTOP ~S°

DC L3
DC 1
DC 10°

END

100
101
102
103
104
105
106

Try to convert it into machine code

'//

¢ /‘//Q

\./’ N
O x

Try to convert into machine code

START 100

MOVER AREG, X Jﬁﬁ 04 1 ___
L1 ADD BREG, ONE \;a, 101 012 ___

ADD CREG, TEI\@ 102 06 3 ___

STOP 103 00 0000
X DC 's’ 104
ONE DC b 105
TEN DC 10 106

END

Backpatching

 The operand field of instruction containing a
forward reference is left bIank initially.

e Step 1: Construct TII(TaI;g@ of incomplete
instruction)

e Step 2: After encountering END statement
symbol table would contaig the address of all
symbols defined in the s&@@’rce program.

N
SYMBOL NAME ADDRESS

R
X “Hoa

ONE 105

TEN 106

* Now we can generate machine code...

Xa
G
04 I 104
)
01 & 2 105
06 2 106
00 0 000

Assembler Directive

* ORIGIN

'//

¢ /‘//Q

* LTORG

\./’ N
O x
< (>

* EQU

Pass 1 Assembler

Pass 1 assembler separate the labels,
mnemonic opcode table, and operand fields.

Determine storage reqmrement for every
assembly language statément and update the
location counter. ;f.::;;«’

Build the symbol table. Symbol table is used to
store each label and each variable and its
corresponding address.

Pass 2 Assembler: Generate the machine code

How pass 1 assembler works?

Pass | uses following data structures.
1. Machine opcode table.(MOT)

N

2. Symbol Table(ST) ¢

3. Literal Table(LT) .};95\?’"
4. Pool Table(PT)

Contents of MOT are fixed for an assembler.

Observe Following Program

START 200
MOVER AREG, ='5’
MOVEM AREG, X
L1 MOVER BREG, =*2’
ORIGIN L1+3 A
LTORG Q¢

NEXT ADD AREG, =1’ O
SUB BREG, =*2’ [
BC LT, BACK O
LTORG '

BACK EQU L1
ORIGIN NEXT+5
MULT CREG, =4’
STOP

XDS1

END

START 200

L1

NEXT

BACK

MOVER AREG, =5’
MOVEM AREG, X
MOVER BREG, =2’
ORIGIN L1+3
LTORG
=l5’
=IZI

ADD AREG, =1’
SUB BREG, =2’
BC LT, BACK
LTORG

EQU L1
ORIGIN NEXT+5
MULT CREG, =4’
STOP

XDS1

END

200
201
202

205 >
206 o

212
213
214

215

Construct Symbol table

index|_Symbol Name

X 214
L1 @ 202

N 207
Q
BACK 202

W N = O
2
m
X
—

Construct Literal Table

index ___Literal __Address

0 S5 o 205
1 2 206
2 1 210
3 2 211
4 4 215

Pool Table.

* Pool table contains starting literal(index) of
each pool.

Literal nuinber

NOW CONSTRUCT INTERMEDIATE
CODE/MACHINE CODE

* For constructing intermediate code we need
MOT.

N
R

Enhanced Machine opcode Table

Table 1.10.1 : An enhanced machine opcode table (MOT)

Mnemonic opcode Class Opcode Length
0 STOP IS 00 1
1 ADD IS 01 1
2 SUB IS 02 1
3 MULT IS 03 1
4 MOVER IS WO o4 1 :
5 MOVEM s <P 05 1 i
6 COMP 15 N\ 06 1 |
7 BC 150N 07 1
8 DIV A 08 1
9 READ Qs 09 1
10 PRINT AT = 1
1 START AD = -
12 END AD 02 ~
13 ORIGIN AD o3 -
14 EQU AD 04 —
15 LTORG AD -~ -
16 DS DL 5 .
17 DC DL 02 1
18 AREG RG 01 =
19 BREG RG 5
20 CREG RG = .
21 EQ Ce 01

ﬂ}fmomc opcode ~ Class . OpcOde ' Length
— 1T CC >0
— T i G
— IF CC 04
GE ol 05
NE CC 06
ANY CC 07

INTERMEDIATE CODE

Format for intermediate code:

For every line of assembly statement, one line
of intermediate code is generated.

LN
g

NN
Now/

o X\

Each mnemonic field is represented as

(statement class, and machine code)

Statement class can be:

1. 1S
2. DL/DS
3.AD

* E.g. MOVER AREG, X

.',
Mnemonic field Operand field

>
* So, IC for mnemonic flelgt ‘'of above line is,

e (statement class, ma@hme code)
e (IS, 04) f...from MOT

Operand Field:
Each operand field is represented as

AN
(operand class, reference)

74\

p
£
£
\&«
N
\
\

o}
The operand class can be:x>

N\ 4

<O
C: Constant

S: Symbol

L: Literal
RG: Register

1.
2.
3.
4,
5. CC: Condition codes

E.g. MOVER AREQG, X

For a symbol or literal the reference field
contains the mdex of the operands entry in

«
s‘..

<)
N\
AN

So IC for above line is:
(IS, 04) (RG, 01) (S, 0)

* For example...

A
AR %
o\

» START 200 &°

+ IC: (AD, 01) (C, 200)""
<OX

Intermediate Code

(AD, 01) (C, 200)

200 (IS, 04) (RG,01) (L, 0)
201 (1, 05) (RG,01) (5,0) & @
202 (IS, 04) (RG,02) (L 19 """
203 (AD, 03) (C, 205)%

205 (DL, 02) (C,5)
206 (DL, 02) (C, 2)

207 (1S,01) (RG, 01) (L, 2)

208 (IS, 02) (RG, 02) (L,3)
209 (IS, 07) (CC, 02) (S, 3)
210 (DL,02) (C,1)

211 (DL,02) (C,2) &%
212 (AD, 04) (C, 202)%”
212 (AD, 03) (C, 212)
212 (IS, 03) (RG, 03)(L, 4)
213 (IS, 00)

214 (DL, 01, C, 1)
215 (AD, 02)
215 (DL, 02) (C,4)

Example No.2
START 205

MOVER AREG, ='6’
MOVEM AREG, A
LOOP MOVER AREG, A
MOVER CREG, B
ADD CREG, =2’
BC ANY , NEXT >
LTORG >
ADD BREG, B Q)
NEXT SUBAREG, =1’ >
BC LT, BACK <OX
LAST STOP
ORIGIN LOOP+2
MULT CREG, B
ORIGIN LAST+1
A DS 1
BACK EQU LOOP
B DS 1
END

e PASS 2 assembler requires two scans of

program to generate machine code.
AN

* |t uses data structures defmed by pass 1. like
symbol table, MOT, LT\

Q7

’\\./

Design of two pass assembler

* Tasks performed by the passes of a two pass
assembler are as follows:

* Pass 1: &
1. Separate the symbol, mMQemomc opcode, and
operand fields. Sy

2. Build the symbol tabfe

3. Perform LC processmg

4. Construct intermediate representation(or IC).
* Pass 2:

1. Synthesize the target program.

Source
BN

Program

Two Pass Assembler

Data structures

Pass |

\'\’, .
< Target

S s o Passll [~ Program

\ — Data access
- -» Control transfer

Intermediate code

Analysis Phase Vs. Synthesis Phase

mnem-)
onic _ code length
ADD | 0] l
SUB 02 I
Mnemonics @
,\\/&
N
Source Analysis " \§>_ _____ 4 Synthesis Target
Program phase <§3 phase Program
O
symbol qddress
AGAIN| 104
N 113 — Data access

Symbol table - -» Control transfer

Pass 1 Algorithm

Algorithm 4.1 (Assembler First Pass)
1. loc_cntr := O (default value)
pooliab_ptr ;= 1; POOLTAB[1] := 1:
lirtab_per ;= 1;
2. While next statement is not an END statement
€a) If label is present then
this_label = symbol in label field;
Enter (this label. loc_cnir) in SYMTAB.
(b) If an LTORG statement then

(1) Process literals LITTAB [F LTAB |pooltab_ptr] | ... LITTAB [li.
tab_prr—1] to allocate Jg:y and put the address in the addres,
ficld. Update loc_cnrr uKnﬁngly.

(i) pooltab_pr = ponlla\v& +: 3

(iit) POOLTAB [pooir zbw = lirtals_pirs
() If a START or ORIGRS atement then

loc_entr := valy %ciﬁcd in operand ficld;

(d) If an EQU smtcr@ n

(i) this_adedyr - ue of <address SpPecs;
(i) Correct the'3ymuab eniry for this_label to (this_label. this_cddry.
(€) If a declarari Statement then
(1) cod of the decluration statement;

(i1) size := Size of memory area required by DC/DS.
(i) loc_cntr = loe_cntr + Sizes

(iv) Generate IC (DL, code) - - .*.
() If an imperative statement then
(1) code := machine opcode from OPTAB:;
(ii) loc_cnir := loc_cntr + mstruction length from OPTAB:
(iii) If operand is a literal then
this_literal == literal in operand field;
LITTAB [{intab_pir) -= this_literal:
fttab_ptr := littab_ptr + 1:
clse (i.e. operand is a symbol)
this_entry := SYMTAB €niry number of operand:
Generate IC (IS, code)(S. this_entry)”;
3. (Processing of END starement)
(a) Perform step 2(b).
(b) Generate IC ‘(AD,02)".
(c) Go to Pass 11

Pass 2 Algorithm

Algecithm 4.2 (Amoembler Second Puass)

1. code crea address = address of code _areor:
pooliab_ptr (= §;
loc_ cntr 2= 0,

2. While poext statement is oot an END statcrnemt

() Clear machine code_bwffer.
(b) If an LTORG stotcment

(1) Process hiterals in l.l'l'l‘o\l!ll%()l:l'l\ll lposerteabs gur)) ... LITTAR
[POOLTARB |pacital_ptr+ 1 similar 1o processing of constanis
ina DC stastement, Le, ass the literuls in machhine coxde Ieeffor.

(it) size (= size of memory required for literals:
(ii1) pooliab_ptr = poolte + 1

() If a START or ORIGIN
(i) loc_cner = valuc

(ii) xize =0; \0

(<) If a declamton t

(i) If a DC ﬁ then
Asscr the constant in machkine _code _buffer.

(it) size := size of memory arca required by DC/DS;
(e) If an imperntive statement
(1) Get operund address from SYMTAB or LITTAB.
(ii) Assemble instruction in machine code Iaffer.
(iii) xize = size of instruction;
(D If size 3% 0 then
(i) Move contents of machine code buffer to the address code area-
address + loc_cnir,
(i) loc.cmir = loc_cntr + size;

3. (Processing of END statement)

(a) Perform steps 2(b) and 2(f).
(b) Write code_area into output file,

moent then
iticd in operand ficld:

Comparison between Pass 1 and Pass2

T AT

01 It requires only one scan to It requires two scan to generate

generate machine code macl\ne code.

4\\
@

02 It has forward reference R\ don’t have forward reference

problem. C‘ problem.

Q‘b
KO

03 It performs analysis of It process the IC to synthesize the

source program and target program.

synthesis of the
intermediate code.

04 It is faster than pass 2. It is slow as compared to pass 1.

Pass 1 output and pass 2 output

* Pass 1 assembler generates Intermediate

code.
AN

* Pass 2 assembler generg;:é‘s Machine code.

g

A
.K“K
N/

& N

v

P\

\‘ »

Consider following example

START 200
MOVER AREG, ='5’ 200
MOVEM AREG, X 201
L1 MOVER BREG, =2’ 202
ORIGIN L1+3 \
LTORG 0
=5’ 205 A2
=’ 206 N0
NEXT ADD AREG, =1’ 207 Y
SUB BREG, =2’ 208 7
BC LT, BACK 209 £ OF
LTORG
=1’ 210
=’ 211
BACK EQU L1
ORIGIN NEXT+5
MULT CREG, =‘4’ 212
STOP 213
X DS 1 214
END

=4’ 215

Symbol Table and Literal Table

0 X 214
1 L1 é@ 202
2 NEXT \3{5‘ 207
3 BACK \&“}’ 202
%)
R
mm

(AD, 01) (C, 200)

(1S, 04) (RG,01) (L, 0) 200 0401 205
(IS, 05) (RG,01) (S,0) 201 0501 214
Y
(IS, 04) (RG,02) (L,1) 202 %@"’62 206
>
(AD, 03) (C, 205) 203 5%
Q’;\\}
(DL, 02) (C,5) Af0% 00 00 005
(DL, 02) (C, 2) 206 00 00 002

(1S,01) (RG, 01) (L, 2) 207 0101 210

(1S, 02) (RG, 02) (L,3) 208 02 02 211
(1S, 07) (CC, 02) (S, 3) 209 07 02 202
(DL,02) (C,1) 210 00 00 001
2
(DL,02) (C,2) 211 @(& 00 002
3

(AD, 04) (C, 202) 21@9

R
(AD, 03) (C, 212) 212
(1S, 03) (RG, 03)(L, 4) 212 03 03 215

(1S, 00) 213 00 00 000

(DL, 01, C, 1) 214
(AD, 02) 215
(DL, 02) (C,4) 215 00 00004
R
@
\S&
)
Q}\\}

Variants of Intermediate Code.

* There are two variants of I.C.:
e Variant |
* Variant Il. &

Variant |

* In Variant |, each operand is represented by a

pair of the form (operand class code).
* The operand class is one\of

1. S for symbol 2. LonllteraI
3. C for constant 4<RG for register.

Variant |

Variant |l

In variant Il, operands are processed
selectively.
AN

* Constants and literals are ‘orocessed. Symbols,
condition codes and C\PU registers are not

wl"\.

processed. (K

Variant ||

Comparison

* Variant | does more work in Pass |. Operands
fields are completely processed in Pass 1.
I\/Iemory requwements akreﬁwlgher In Pass 1.

«
s‘.
R

the processmg reqwrement iS evenly
distributed over two passes.

* In Variant Il over all memory requirement of
the assembler is lower.

Memory requirement in Variant 1

Memory requirement in Variant 2

Error Reporting

An assembly program may contain errors.
It may be necessary to report these errors effectively.

Some errors can be reported at%he end of the source
program. \:;j\\'

Some of the typical prog(éms include:
Syntax errors like missing commas..
Invalid opcode

Duplicate definition of a symbol.
Undefined symbol

Missing START statement.

Example

START 100

MOVER AREG, X

ADDER BREG, X &°
ADD AREG,Y

X DC ‘2’ &

XDC ‘3’
ZDC 3
END

START 100

MOVER AREG, X

ADDER BREG, X Invahd&bpcode

ADD AREG, Y U@s@fmed symbol Y
X DC ‘2’ &

X DC ‘3" duplicate definition of Symbol X.
ZDC ‘3
END

Assignment 1

3. Given the following source program:

START 100
A DS 3 .
L1 MOVER . MAREG, B

ADD \q}\ AREG, C
MOVEM\? AREG, D

D EQ \§ A+l
L2 B
GIN A-1

I
C &OQDC ‘g5?
ORIGIN L2+1
STOP
B DC ‘19’
: END L1

(a) Show the contents of the symbol table at the end of Pass 1.

(b) Explain the significance of EQU and ORIGIN statements in the program and
explain how they are processed by the assembler.

(c) Show the intermediate code generated for the program.

2. Explain following Assembler Directives with example.
1. ORIGIN
2. LTORG

3.EQU >

t:'\ >
Nl
3. Write a short note on Assembly language statements.

4. Explain the difference between\@afss 1 and Pass2 assembler.

5. Draw and explain flowchart of pass 1 and pass2 assembler.

6. Write a short note on Variant 1 and Variant 2 of Intermediate code.

7. Refer the program from question no. 1 and write down the Intermediate
code and machine code for the same.

